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Protein crystallography laboratories are performing an

increasing number of experiments to obtain crystals of good

diffraction quality. Better automation has enabled researchers

to prepare and run more experiments in a shorter time.

However, the problem of identifying which experiments are

successful remains difficult. In fact, most of this work is still

performed manually by humans. Automating this task is

therefore an important goal. As part of a project to develop a

new and automated high-throughput capillary-based protein

crystallography instrument, a new image-classification sub-

system has been developed to greatly reduce the number of

images that require human viewing. This system must have low

rates of false negatives (missed crystals), possibly at the cost of

raising the number of false positives. The image-classification

system employs a support vector machine (SVM) learning

algorithm to classify the blocks making up each image. A new

algorithm to find the area within the image that contains the

drop is employed. The SVM uses numerical features, based on

texture and the Gabor wavelet decomposition, that are

calculated for each block. If a block within an image is

classified as containing a crystal, then the entire image is

classified as containing a crystal. In a study of 375 images, 87 of

which contained crystals, a false-negative rate of less than 4%

with a false-positive rate of about 40% was consistently

achieved.
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1. Introduction

Protein crystallography provides access to structural infor-

mation with atomic resolution for macromolecules such as

DNA, RNA, saccharides and proteins. This structural infor-

mation helps biologists to understand the function of

the macromolecular systems investigated. Understanding

structure–function relationships can then also help projects

aiming at blocking or improving the properties of biomacro-

molecules. One example is ‘structure-guided drug design’ (e.g.

Hol, 1986; Veerapandian, 1997; Guillemont et al., 2005), where

drug designers use detailed knowledge of the shape of key

cavities and binding modes of ligands to improve the affinities

and pharmacological properties of ‘leads’, i.e. of potential

pharmaceuticals. In other areas knowledge of, for example, the

insulin structure has led to research to obtain variants of

human insulin with improved pharmacokinetic properties

(see, for example, Vajo et al., 2001).

Crystallographers go through several essential experi-

mental steps. During the protein crystallization stage, proteins

are injected into many different solutions in the hope of



crystal growth. The crystallographers then identify the

successful experiments that yield mountable crystals. The final

stage is the computation of protein structures from the X-ray

diffraction patterns of protein crystals.

Currently, during the stage of identification of successful

experiments, human crystallographers need to manually

examine images taken by microscopic cameras. With the

increasing number of crystal-growth experiments, the total is

up to millions of images per year. The process is both time-

consuming (hence expensive) and prone to human error.

Automating this task is therefore an important goal. As part of

the capillary-based protein crystallography instrument

project, we have developed a new image-classification

subsystem to greatly reduce the number of images that require

human viewing.

Fig. 1 shows some example images of protein crystallization

trials taken by a Structural Genomics of Pathogenic Protozoa

(SGPP) RoboDesign microscope camera (RoboDesign

International Incorporated, Carlsbad, CA, USA). As can be

observed, great variability is present in the images on which

we need to perform classification. Different drop shapes,

crystal shapes and precipitate clouds in the images make

automatic classification a very challenging machine-learning

problem.

2. Related literature

Research on this problem is still in its early stages. Only a few

papers have appeared on the subject and standard image

collections and benchmarks do not yet exist. In early work,

Zuk & Ward (1991) used the Hough transform (Shapiro &

Stockman, 2001) to identify straight edges of crystals, but did

not attempt to classify precipitates.

Wilson (2002) used the Sobel edge detector to locate drop

boundaries and detected objects (connected component of

edge pixels) with high circularity. The classification of objects

inside the drop boundary was based on features computed

from edge pixels. Their results had 86% of true crystals clas-

sified as crystals, while 77% of precipitates were classified as

precipitates. Jurisica et al. (2001) used a custom-built image

acquisition and image-processing system to analyze protein

crystallization experiments under oil. They detected drop

boundaries by fitting a conic curve and classified images based

on spectral analysis.

Spraggon et al. (2002) applied the Canny edge detector and

circle fitting on the largest connected component of edge

pixels to drop-boundary detection. Their features included

geometric features related to straight lines (detected by the

Hough transform) and texture features based on correlations

between intensities at various distances and directions. For

classification, they used a self-organizing neural network,

achieving 25% false-negative and false-positive rates.

Cumbaa et al. (2003) described a custom-built system which

uses a probabilistic graphical model for drop-boundary

detection and for classification. Features are based on corre-

lation filters and the Radon transform, which also detects

straight lines (Weisstein, 1999–2005). The classifier achieves a

balanced error rate of 15% for binary classification of crystal-

positive and crystal-negative. Bern et al. (2004) used edge

detection followed by dynamic programming curve tracking to

determine the drop boundary. They used a decision-tree

classifier with hand-crafted thresholds operating on features
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Figure 1
Examples of images of crystallization trials taken by an SGPP RoboDesign microscope camera. (a) Clear; (b) clear with an air bubble; (c) crystal with an
air bubble; (d) precipitate; (e) precipitate with an air bubble; (f) complex precipitate (or denatured protein).



derived from the Hough transform and from curve tracking.

The classification achieves a false-negative rate of 12% and a

false-positive rate of 14%.

The best result so far is reported in Zhu et al. (2004) using

geometric features to characterize local pixel gradients and

texture features derived from the gray-level co-occurrence

matrix. For classification, a support vector machine (SVM) is

compared with an automatic decision-tree classifier, achieving

a false-positive rate of 14.6% and a false-negative rate of

9.6%.

The results reported above are not directly comparable with

the 40 and 4% reported here because of the different wells

used to perform protein crystallization and the different sets

of both training and testing images.

3. System overview

The system we have built accomplishes several important

goals. First of all, it handles the required throughput (thou-

sands of images per day). Secondly, it correctly rejects the

majority of the non-crystal images, maintaining a false-positive

rate of less than 40%. This means that three out of five images

without crystals do not need to be manually examined. Since

the majority of images do not contain crystals, this is a

significant time saving. Most importantly, the system consis-

tently identifies images with crystals correctly, with less than

4% error. Finally, it can be integrated into the overall system

pipeline illustrated in Fig. 2 and easily used by crystallo-

graphers with no special computer skills.

Fig. 2 shows the role our imaging subsystem plays in the

overall crystallography system. It receives images taken by a

RoboDesign microscopic camera of plates containing results

from completed experiments. The classifier then labels the

images it receives as positive (containing crystals) or negative

(containing no crystals). Images classified as containing no

crystals are discarded. Images classified as containing crystals

will be transferred to a human viewing station for further

confirmation. Based on results from the human viewing

station, successful experiments are identified and crystallo-

graphers can proceed to the next stage.

Our image-analysis system consists of five stages. During

the first stage, the system preprocesses the raw image obtained

directly from the microscopic camera. In the second stage, it

performs image segmentation to locate the area of interest and

crop the image. In the third stage, it performs feature

extraction to obtain features that will serve as numerical input

to the classifier. The system then divides the image into small

overlapping blocks of size 40 � 40 pixels in steps of 20 pixels.

The size of the blocks was determined experimentally by the

average size of crystals on images. It was selected to be large

enough to encompass entire crystals, but small enough to not

present a huge computational burden. Sliding blocks are used

to provide a finer coverage of the image. Because we classify

the entire image as containing a crystal if any of the over-

lapping blocks are classified positive, we bias the classifier to

detecting crystals when they occur.

In the fourth stage, for each block, the system computes the

numerical representations of features extracted in the third

stage. In the fifth and final stage, the system utilizes a trained

SVM to classify each block by its numerical feature vector. An

image is classified as containing crystals if at least one block in

the image is classified positive by the SVM.

4. Image segmentation

Fig. 3 shows enlarged top and side views of a well being

imaged. In the images taken by the microscopic camera, only

the regions associated with the solution drop inside the well

are of interest to the classification step. Several problems arise

in the classification step if one tries to classify the entire image.

First of all, random noise outside the region of interest is very

likely to be classified as crystals. Secondly, boundary edges of

the well and of the occasional air bubble inside the drop often

show up as high-contrast textures or significant segments in

feature extraction, which could potentially mislead the clas-

sifier. Finally, computation time is wasted on processing

information that should not matter in the first place. There-

fore, finding and segmenting the solution drop area precisely is

an important task.

Unfortunately, the images can be very noisy owing to clouds

of precipitants and other artifacts on the plate outside of the

well. The solution drop is sometimes difficult to locate because

drop shrinkage owing to evaporation often results in bubbles.

Furthermore, there are many variations in image character-

istics, such as well position and size, general lighting and focus

depth.

To locate the well, we use an algorithm that finds the best

approximation circle in the image. We then remove the

regions containing bubbles from the area of interest.
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Figure 2
System overview.

Figure 3
The well on a plate.



4.1. Locating the well

We first examined the possibility of using the classic circle-

finding algorithm based on the Hough transform (Shapiro &

Stockman, 2001). The algorithm produces accurate well-

detection results for clear images. However, it fails to work

well for images in which the well boundary is obscured by

precipitants inside the well and there is excessive noise. For

those images, the algorithm often yields a circle that is off from

the center of the well. Therefore, we designed a new algorithm

that better suits our application.

The well-detection algorithm is illustrated by example in the

images of Fig. 4. The algorithm first preprocesses the image

using a median filter to reduce noise. It then applies the Canny

edge detector to the image to obtain an edge image. It then fits

a circle to the edge pixels in the image using a novel algorithm

that takes advantage of the fact that concentric circles of edge

pixels are often observed in the images.

The key idea of the new circle-fitting algorithm is illustrated

by Fig. 5: a Euclidean (x, y) to polar (r, �) coordinate trans-

formation about the center of a circle turns the circle into a

straight line in the new coordinate system. This idea can be

easily used to determine the correctness of the center of the

circle determined to be the best approximation of the well. For

each possible center, we transform an annulus about it to a

rectangle. The rectangle with the straightest lines is selected

and the corresponding center is the best candidate for the

center of the well. To determine the straightness of the lines in

the transformed rectangular image, we compute the variance

of the means of pixel intensities of all columns in the trans-

formed image. The higher the variance, the more contrast

between the columns and therefore the straighter the lines in

the image.

One problem introduced by this algorithm is the selection

of the size of the annulus on which we perform the transfor-

mation. This is closely related to the question of how much

information is needed for each possible center for the algo-

rithm to make the best decision. Owing to random noise in the

images, some images work better with a larger annulus, while

others work better with a smaller one. The solution to this

problem is to record for each possible center only the highest

variance computed among a range of annulus sizes.

Since the wells are located within a certain range on all the

images, we only need to perform the coordinate transforma-

tion and variance computation for a small number of center

candidates. The center candidate with the highest computed

variance is determined to be the center of the best approx-

imation circle for the well. After the correct center is located,

the radius of the circle must be determined. This can be

accomplished by finding the radius that makes the circle

overlap with the most edge pixels, because it is often the case

that well boundaries contain the largest number of adjacent

edges in an image.

The results produced by this algorithm are excellent. We

tested the algorithm on 514 images of various noise levels and

drop shapes. Out of those 514 images, the algorithm produced

a slightly off-center circular fit to the well for only five images,

a success rate of 99%.

4.2. Locating and removing bubbles

Fig. 6 shows the process of finding the bubbles inside an

image. The algorithm first segments the well into regions with

gradual changes in pixel intensities by growing regions along

the boundary of the well. The region growth is performed by a

classic flood algorithm that recursively grows a region pixel by

pixel until the image gradient at a pixel exceeds a certain

predefined threshold in all directions. The recursion is

implemented using a stack for performance. The algorithm

then checks to see if regions contain holes (produced by edge

pixels) and removes those regions from the list of potential

bubbles. Finally, the algorithm thresholds the list of bubbles by

pixel-intensity statistics and sizes (bubbles are generally not

very large). The remaining regions are then marked as

bubbles.

research papers

274 Pan et al. � Automated classification of protein crystallization images Acta Cryst. (2006). D62, 271–279

Figure 4
Illustration of the algorithm for locating the well. (a) Original image; (b) Canny edge-detected image; (c) final image with located well.

Figure 5
Euclidean (x, y) to polar (r, �) coordinate transformation of an annulus.



Problems arise in the determination of the thresholds.

Currently, the thresholds are set manually through experi-

menting with the images. Some bubbles in precipitate images

do not have well defined boundaries and the algorithm fails to

produce bubbles that are visually identifiable. The final

product of the well- and bubble-locating routines is a mask of

the region of interest.

5. Feature extraction

Feature extraction is the most important stage in the system,

because for the SVM classifier to classify well the features

must distinguish well between crystals and non-crystals. After

much consideration and experimentation, we selected the

following features: (i) pixel-intensity statistics, (ii) BlobWorld

texture features (UC Berkeley; Carson et al., 2002) and (iii)

results from Gabor wavelet decomposition.

Pixel-intensity statistics for a block are the mean and

standard deviation of the intensity values in that block. In the

following sections, the texture and wavelet features are

explained in detail.

5.1. BlobWorld texture features

Although texture is a well studied property, most work

extracts texture features either on a global scale or on a

uniform texture scale across the whole image. Since texture is

a local neighborhood property, texture features computed on

the wrong scale would lead to confusion. In order to find an

appropriate scale for each pixel, we adapted the method of

scale selection based on edge-polarity stabilization, which is

derived from the gradient of gray-level intensity (Carson et al.,

2002). Polarity is a measure of the extent to which the gradient

vectors in a certain neighborhood all point in the same

direction. The proper scale is selected based on the derivative

of the polarity with respect to scale. Polarity is calculated at

every pixel in the image for various scales and each polarity

image is smoothed using a Gaussian filter. The best scale is

selected based on the difference between the values of

polarity at successive scales (Carson et al., 2002).

After a scale is selected for each pixel, three texture

descriptors, which are derived from the gradient of gray-level

intensity, are assigned to that pixel. The three texture

descriptors are polarity at that scale, anisotropy and normal-

ized texture contrast. Anisotropy measures the degree of local

orientation. Texture contrast defines the homogeneity of the

pixels within the local region (Carson et al., 2002). The results

of a sample texture analysis are shown in Fig. 7.

5.2. Gabor wavelet decomposition

Gabor wavelets (Gabor, 1946) are complex exponential

signals modulated by Gaussians and are widely used in

computer vision for edge detection (Mehrotra et al., 1992;

Wang & Jenkin, 1992), noise filtering (Donoho, 1995; Cristóbal

& Navarro, 1994), image compression (Daugman, 1983; Porat

& Zeevi, 1988), texture analysis and synthesis (Turner, 1986;

Porat & Zeevi, 1988) etc. Specifically, Gabor wavelets are

suitable for edge detection as a consequence of two important

properties: good edge localization (Van Deemter & Du Buf,

2000) and the absence of image-dependent parameter tuning.

In this work, Gabor wavelets have been used for the

extraction of the low-level directional primitives present in an

image. Precisely, a bank of eight filters centered at frequency 1
4

and eight orientations (k�/8, k = 0, . . . , 7) has been used. The

Gabor decomposition through the bank of wavelets maps the

input image into eight resulting images that have been inte-

grated into a unique result, called the response. To compute

the response, each pixel (x, y) is assigned an eight-component

vector H(x, y) composed of its Gabor decomposition results.

The response is then computed through

responseðx; yÞ ¼ 0:5þ arctan
ðjHðx; yÞj � �jHjjHjÞ

~jHjjHj

� ��
�; ð1Þ

where |H(x, y)| is the modulus of H(x, y), �jHjjHj is the modulus of

the mean of H(x, y) over the whole image and ~jHjjHj is the square
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Figure 6
Illustration of the algorithm for locating the bubbles. (a) Original image with well located; (b) bubble regions found inside the well, where each region
appears as a different shade of gray and edges are in white; (c) final region of interest.



deviation of the mean of H(x, y) over the whole image. The

response is bounded by the range [0, 1]; high response values

indicate the presence of a directional primitive in the pixel.

The response is the only Gabor feature currently employed in

our work.

5.3. Blocking and feature vectors

After feature extraction, we need some way of summarizing

the features into numerical values which are the required

input to the SVM classifier. The way we accomplish this is to

first divide the region of interest into overlapping blocks of

size 40� 40 pixels in steps of 20 pixels. We then summarize for

each block a vector of numerical values from the output of the

feature-extraction process. These overlapping blocks are the

key to our low false-negative rates. Any crystal that is missed

by one block is very likely to be captured by a nearby over-

lapping block. The feature vector computed for a particular

block determines the classification of the block. We have a

total of 18 feature values for each block (see Table 1). All

feature values above are computed on a per-block basis.

6. Classification using support vector machines

Each block feature vector is classified using a pre-trained

support vector machine. SVMs are binary classifiers. They first

map the feature vector into a very high-dimensional space via

a non-linear kernel function. They then cut the space in half

with a linear hyperplane. This hyperplane is chosen to maxi-

mize the margin of separation between positive and negative

samples in a training set. The image is classified as containing

crystals if any one of its blocks is classified positive by the

SVM. Fig. 8 is an overview of the entire process of training and

classification. Both training and classification use very similar

processes.

6.1. Training support vector machine

For training, we manually label (positive/negative) blocks in

selected training images to generate a list of labeled (classi-

fied) image blocks; images whose blocks appear in that list are

processed, a vector of numeric features is computed for each

block on the list and the generated list of labeled vectors is

used to train the SVM classifier. The classifier learns to

differentiate between positive and negative samples.

6.2. Classification

Classification of new images proceeds similarly: the image is

processed as before and feature vectors are computed for all

blocks in the region of interest in the image. These vectors are

then classified using the previously trained SVM. Fig. 9 shows

some classification examples.

7. Results

Experiments were performed over a data set of 375 images

annotated by hand as positive or negative. This data set

consists of 138 clear images, 150 preci-

pitate images and 87 crystal images.

These images were obtained by a SGPP

RoboDesign microscope camera. An

average of 4–5 blocks were manually

selected and labeled from each of the

images in the data set. The selected

blocks in a positive image contain crys-

tals and are labeled as positive. On the

other hand, the selected blocks in a

negative image contain non-crystals

(either clear or precipitate) and are

labeled as negative.

A total of four different experiments

of varying sizes of the training set were

performed over the data set. In each of

the experiments, the full data set was

divided randomly into two disjoint data

sets: a training set and a test set. For the
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Table 1
Features.

Pixel intensity
F1 Mean of pixel intensities
F2 Standard deviation of pixel intensities

Texture
F3 Maximum of polarity
F4 Minimum of polarity
F5 Mean of polarity
F6 Standard deviation of polarity
F7 Maximum of anisotropy
F8 Minimum of anisotropy
F9 Mean of anisotropy
F10 Standard deviation of anisotropy
F11 Maximum of contrast
F12 Minimum of contrast
F13 Mean of contrast
F14 Standard deviation of contrast

Gabor wavelet decomposition
F15 Maximum of Gabor response
F16 Minimum of Gabor response
F17 Mean of Gabor response
F18 Standard deviation of Gabor response

Figure 7
Example of BlobWorld texture. (a) Original image; (b) texture image with polarity, anisotropy and
contrast values as its color. It is possible to see the different texture of the crystals. One example
would be the crystal located near the center of the well showing up as having a different color from
its neighborhood in the texture image.



four different experiments, the training sets were made up of

50, 60, 70 and 80%, respectively, of the image database and

testing was performed on the remainder1. Furthermore, the

percentages of clear (36.8%), precipitate (40%) and crystal

(23.2%) images were kept constant in each of the four training

sets (and corresponding test sets) to agree with the percen-

tages in the full data set.

In each experiment, ten separate trials were performed and

the false-negative rates and false-positive rates were averaged

over the ten trials. In each trial, the feature vectors of the

manually selected blocks in each image of the training set

serveed as the input to train a classifier. The trained classifier

then classified all the images in the test set for that trial. The

resulting false-negative rate and false-positive rate for each

trial were computed based on the classification results over

whole images, rather than the blocks in the images. The results

of all four experiments are shown in Table 2. Note that

because the number of training blocks per image varies, the

average number of training blocks for the ten trials is given for

each of the four experiments.

It is easy to see that the false-negative rate and the false-

positive rate consistently improved as the size of the training

set increased. The best overall results, a false-negative rate of

2.94% and a false-positive rate of 37.68%, were obtained from

the experiment with 80% of the data set as the training set.

This series of experiments was performed in the hope of

determining the best number of training images or blocks that

are needed when one is required to use the system in practice

with thousands of images. Although the data set over which

the experiments were performed is too small to accomplish

this goal, a trend of diminishing returns is clearly visible from

the results.

Finally, Figs. 10 and 11 show some common misclassifica-

tions in these experiments. These misclassifications arose from

such factors as obscured crystals, crystals mixed with precipi-

tate, small crystal-shaped bubbles, precipitate at the edge of a

bubble, precipitate containing edges and impurities that look

like crystals.

8. Conclusion and discussion

The results presented here show that the system has an

extremely low false-negative rate of 2.9%, while maintaining a

tolerable false-positive rate of 37.7%. The false-negative rate

is low partly because the system is classifying overlapping

blocks of interest in the images so that none of the details of an

image is missed. However, this also contributes to the fact that

it has a relatively high false-positive rate. This shows that the

features described here are not suffi-

cient to completely distinguish crystal

blocks from non-crystal blocks. There is

a need for the inclusion of new features

that take advantage of subtle cues such

as the presence of corners and parallel

segments that humans use to classify

images. Attempts to include features of

perceptual groupings (Penas, 2005) that

capture high-level structures composed

of line segments were not successful

owing to the difficulties involved in

summarizing such features numerically.

Better summarizing schemes need to be

devised in order to best incorporate

features from these perceptual group-

ings into the system. In addition to the

inclusion of better features into the

system, there is the possibility of

developing a better classifier that clas-

sifies crystal and non-crystal images into

subclasses to help the optimization step

of the protein crystallization experi-

ments. Furthermore, optimizations in

performance are under consideration

since currently the system takes
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Table 2
Results from four experiments of varying sizes of the training set.

Training-set size (%) 50 60 70 80

No. of training images 187 225 263 300
No. of clear training images 69 80 97 110
No. of precipitate training images 75 90 105 120
No. of crystal training images 43 55 61 70
No. of training blocks (averaged over ten trials) 640 772 897 923
No. of crystal test images 44 32 26 17
False negatives (%) 3.86 3.75 3.42 2.94
False positives (%) 42.50 41.19 40.58 37.68

Figure 8
Training/classification pipeline.

1 We initially tried experiments with 90% of the data in the training set, but the
remaining 10% were not sufficient for a test.



approximately 30 s to process an image on a Pentium IV

machine. Finally, the most intriguing direction for future work

to take is to design a system that helps recognize the trends in

crystallization conditions, basing its decisions on the classifi-

cation results, so that protein crystallization experiments could

be performed much more efficiently.
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Figure 11
More mistaken classifications, shown as details of larger images. (a) Light impurity classified as crystal. (b) Precipitate at the edge of the bubble classified
as crystal. (c) Edgy precipitate classified as crystal.

Figure 9
Classification examples. A green block indicates that block is classified positive. (a) A crystal is correctly classified; (b) multiple crystals are correctly
classified; (c) precipitates are correctly classified negative.

Figure 10
Some mistaken classifications, shown as details of larger images. (a) Obscure crystal (at 9 o’clock) classified as non-crystal. (b) Precipitate and crystal
mixture classified as non-crystal. (c) Bubble classified as crystal.
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